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Direct observation of the effective bending moduli of a fluid membrane:
Free-energy cost due to the reference-plane deformations

Yoshihiro Nishiyama
Department of Physics, Faculty of Science, Okayama University, Okayama 700-8530, Japan

~Received 15 March 2003; revised manuscript received 9 May 2003; published 3 September 2003!

Effective bending moduli of a fluid membrane are investigated by means of the transfer-matrix method
developed in our preceding paper. This method allows us to survey various statistical measures for the partition
sum. The role of the statistical measures is arousing much attention, since Pinnow and Helfrich claimed that
under a suitable statistical measure, that is, the local mean curvature, the fluid membranes are stiffened, rather
than softened, by thermal undulations. In this paper, we propose an efficient method to observe the effective
bending moduli directly: We subjected a fluid membrane to a curved reference plane, and from the free-energy
cost due to the reference-plane deformations, we read off the effective bending moduli. Accepting the mean-
curvature measure, we found that the effective bending rigidity gains even in the case of very flexible mem-
brane~small bare rigidity!; it has been rather controversial that for such a nonperturbative regime, the analyti-
cal prediction does apply. We also incorporate the Gaussian-curvature modulus and calculated its effective
rigidity. Thereby, we found that the effective Gaussian-curvature modulus stays almost scale invariant. All
these features are contrasted with the results under the normal-displacement measure.
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I. INTRODUCTION

Amphiphilic molecules in water segregate spontaneou
into flexible extended surfaces called fluid~lipid! membranes
@1,2#. The fluid membranes are free from both surface t
sion and shear modulus, and the elasticity is governed o
by bending rigidity@3,4#. The Hamiltonian is given by the
following form:

H5E dAS k

2
J21k̄K D . ~1!

The mean curvatureJ is given by the summation of two
principal curvaturesJ5c11c2, whereas the Gaussian curv
tureK is given by their productK5c1c2. The corresponding
two moduli k and k̄ are called bending rigidity and
Gaussian-curvature modulus, respectively. The integra
*dA extends over the whole membrane surface. T
Gaussian-curvature term governs the global structure of
membranes, because the term*dAK measures a topologica
index; for instance, for a vesicle withnh handles, such an
identity *dAK54p(12nh) holds ~Gauss-Bonnet theorem!.

In spite of its seemingly simple expression, it is very ha
to treat Hamiltonian~1! by analytical methods. As a matte
of fact, when written in terms of an explicit parametrizatio
the Hamiltonian becomes ugly; see Eqs.~4!–~6! mentioned
afterwards. Hence, owing to the thermal undulations and
mutual interactions, it is expected that the effective bend
moduli are modified effectively for macroscopic leng
scales. In order to clarify this issue, numero
renormalization-group analyses have been reported so
@5–8#. For the bending rigidity, the following
renormalization-group equation has been obtained:

k85k2a
kBT

8p
ln M , ~2!
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with renormalized bending rigidityk8, temperatureT, and
the number of decimated moleculesM. Literature agrees tha
the numerical prefactor in the above equation isa53. ~A
more detailed account of the historical overview would
found in Ref.@9#.! Because ofa.0, the effective bending
rigidity is reduced by thermally activated undulations. Th
conclusion might be convincing because the membr
shape itself should be disturbed by the thermal undulatio
As a matter of fact, it has been known that the orientatio
correlation is lost for long distances@10#. It is quite natural to
anticipate that membranes become flexible for length sc
exceeding this correlation length.

Recently, however, Pinnow and Helfrich@9,11# obtained a
remarkable conclusiona521(,0). The key ingredient of
their new argument is that they considered the role of m
sure factors for the partition sum. They insist that the lo
mean curvatureJ should be the right statistical measu
rather than other measures such as the normal displacemh
and the local tilt angleu. ~The normal displacementh has
been used as a standard measure. We will explain theh-based
parametrization afterwards.! After an elaborated calculation
of the variable replacementh→J and succeeding
renormalization-group analysis, the authors reach the con
sion of a521. Moreover, as for the Gaussian-curvatu
modulus, they insist that the effective modulusk̄8 should
remain scale invariant;

k̄85k̄. ~3!

This conclusion again contradicts the common belief thak̄
would be enhanced for macroscopic length scales; nam
k85k1(5kBT/6p)ln M @7,8#. This enhancement signals th
topological instabilities.

The developments mentioned above all stem from the
proximation that the membrane is almost flat and the th
mally excited undulations are extremely small. In our p
©2003 The American Physical Society01-1
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ceding paper@12#, we developed anab initio simulation
scheme in order to study the thermodynamics of a fl
membrane beyond such a perturbative level. As a demon
tion, we calculated the transformation coefficientdk8/dk,
which yields the direction of the renormalization-group flo
through coarse graining. We found that the renormalizati
group flow is influenced significantly by the choice of th
statistical measures. In fact, under the mean-curvature m
sure, we observed an indication that the effective bend
rigidity flows toward the large-k direction. We did not in-
clude thek̄ term in the preceding work.

In this paper, extending the preliminary analysis, we p
pose an efficient method to observe the effective bend
moduli directly: We subject a fluid membrane to a curv
reference plane. From the free-energy cost due to
reference-plane deformations, we read off the effective be
ing moduli. Our data indicate definitely that under the me
curvature measure, the membrane stiffening occurs even
the case of very flexible membranek,1. This result sup-
ports the picture that the stiffening, contrary to our na
expectation, is driven by the thermal fluctuations. We a
calculate the effective Gaussian-curvature modulus,
show that it remains almost scale invariant. Again, the re
is in good agreement with the Pinnow-Helfrich claim.

It has to be mentioned that the Monte Carlo method
been utilized successfully in the studies of membranes
vesicles@2#, For the Monte Carlo method, however, a tet
ered~polymerized! membrane@13# rather than a fluid mem
brane is more suited, because a membrane is implement
a computer as an assembly of molecules and junctions b
ing close resemblance to a tethered membrane.~Note that
because of the absence of shear modulus, fluid membr
should have no internal structure.! However, Gompper and
Kroll succeeded in simulating fluid membranes by the Mo
Carlo method, allowing reconstructions of junctions duri
the simulation@14#. They observed the topological instabil
ties with respect to the variation of temperature and me
brane concentration. In fairness, it has to be mentioned
their Monte Carlo data indicate softening for lipid vesicle

The rest of this paper is organized as follows. In the f
lowing section, we describe our approach to the direct ob
vation of the effective bending moduli. We also explicate t
03190
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outlines of the numerical method which was reported pre
ously @12#. In Sec. III, we present the numerical results. W
are mainly concerned in the case of the mean-curvature m
sure. For a comparison, we will also present the data ca
lated under the normal-displacement measure. With the fi
principles simulation method, we will show that the scena
advocated by Pinnow and Helfrich holds true even for
nonperturbative regime. In the last section, we give summ
and discussions.

II. LEGENDRE TRANSFORMATION AND THE
EFFECTIVE BENDING MODULI

In this section, we explain the idea for calculating t
effective bending moduli. Mathematical formulas necess
in the succeeding numerical simulations are derived. We s
with recalling the outlines of the transfer-matrix method pr
posed previously@12#. It is important to recognize the out
lines of the transfer-matrix construction because it elucida
the underlying physical idea of our effective-bending-mod
calculation. In short, it has to be recognized that our me
brane should be classified into the ‘‘open framed membra
in the category of Ref.@2#.

A. Transfer-matrix formalism: A brief reminder of Ref. †12‡

As mentioned in Introduction, the fluid membranes a
free from shear modulus. This fact tells that the fluid me
branes should have no internal structure. Hence, it is by
means fruitful to think of the microscopic constituents re
izing Hamiltonian~1!. Hence, we proposed in Ref.@12#, an
alternative, in a sense, rather simple minded, approach to
fluid membrane: We constructed the transfer matrix direc
from Hamiltonian~1!. In the construction, we managed se
eral discretizations which we explain below.

As noted in Introduction, the membrane shape is para
etrized by the normal~transverse! displacementh(x,y) from
a base~reference! plane. The variablesx and y denote the
Cartesian coordinates on the reference plane. In term of
displacement fieldh(x,y), the mean curvature and th
Gaussian curvature are parametrized explicitly as follo
@15#:
J~x,y!5
~]x

2h1]y
2h!@11~]xh!21~]yh!2#22]xh]yh]x]yh2]x

2h~]xh!22]y
2h~]yh!2

@11~]xh!21~]yh!2#3/2
~4!
eld
ld
o-
am-
u-

ant
and

K~x,y!5
]x

2h]y
2h2~]x]yh!2

@11~]xh!21~]yh!2#2
, ~5!

respectively. Similarly, the infinitesimal areadA is given by

dA5@11~]xh!21~]yh!2#1/2dxdy. ~6!
Putting them together into Hamiltonian~1!, we arrive at the
explicit representation in terms of the displacement fi
h(x,y). Now, we are led to a two-dimensional scalar-fie
theory with considerably complicated interactions. It is n
table that the theory has even no obvious perturbation par
eter. This fact motivated us to develop a first-principles sim
lation technique.

We put the theory on a square lattice with lattice const
1-2
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a; see Fig. 1~a!. Accordingly, the field variables are now
indexed by integer indices; namely,h(x,y)→hi j . Hereafter,
we set the lattice constant as the unit of length; namelya
51. Our theory has the translational invariance ofh→h
1Dh, and thus, the absolute value ofh is meaningless.
Therefore, it is sensible to use the link variablesW5a]Wh

rather thanh; note thatsW denotes the step associated at ea
link; see Fig. 1. We are led to the dual lattice model. There
for each shaded plaquette of this dual lattice~originally a
vertex spanned by four adjacent links!, the following local
statistical weight is associated:

r~s1 ,s2 ,s3 ,s4!5exp~2H!, ~7!

with

H5dA~s1 ,s2 ,s3 ,s4!S k

2
J~s1 ,s2 ,s3 ,s4!2

1k̄K~s1 ,s2 ,s3 ,s4! D , ~8!

where J(s1 ,s2 ,s3 ,s4), K(s1 ,s2 ,s3 ,s4), and
dA(s1 ,s2 ,s3 ,s4) are to be replaced@12# with the finite-

FIG. 1. ~a! On the square lattice, we consider scalar fieldhi j

denoting normal displacement of a membrane with respect

reference plane. Step variable~gradient field! sW5a]Wh is defined at
each link.~b! The local statistical weightsr @Eq. ~7!# and D @Eq.
~9!# are represented by shaded and open squares, respectively
statistical weightr has a variant so as to take account of oth
integration measure such as the local mean curvature~10!. ~c! From
these local statistical weights, we construct a strip whose row
row statistical weight yields the transfer-matrix element. This tra
fer matrix is diagonalized@12# with the density-matrix renormaliza
tion group~DMRG! method@17–19#.
03190
h
y,

difference versions of the differential forms~4!–~6!. See Fig.
1~b! for the definitions of$sa%. We have setkBT51 because
this factor can be absorbed into the bending modulik andk̄.
Moreover, we should introduce yet another ‘‘statistic
weight’’ for each open plaquette so as to impose the c
straint of rotsW50; the gradient field should be rotationles
That is,

D~s1 ,s2 ,s3 ,s4!5ds11s22s32s4,0 . ~9!

To summarize, we are led to the dual lattice model@16#

with the step variablesW. There are two types of statistica
weightsr(s1 ,s2 ,s3 ,s4) ~7! and D(s1 ,s2 ,s3 ,s4) ~9!, which
are arranged in the checkerboard pattern. Likewise the tr
fer matrix is constructed as a strip like segment shown
Fig. 1~c!. It is a good position to mention a number of r
marks. First, the above theory takes the displacement v
ablehi j as the statistical measure. As noted in Introducti
the mean-curvature statistical measure is considered to
physically sensible. The conversion of the statistical meas
is achieved by the redefinition of the statistical weig
namely,

r~s1 ,s2 ,s3 ,s4!→r~s1 ,s2 ,s3 ,s4!A)
a51

4 U]J~s1 ,s2 ,s3 ,s4!

]sa
U.

~10!

The square root is intended to take the geometrical m
because each step variablesa is sheared by an adjacen
plaquette as well. Second, the step variable is discretize
si5ds( i 2Ns/220.5) with i 51, . . . ,Ns . The unit of stepds
is determined self-consistently during the simulation byds

5RA^si
2&. This step-variable discretization is an influenti

factor concerning the reliability of the present simulatio
and its performance was checked previously@12#. Third, in
order to diagonalize the transfer matrix, we utilized the t
density-matrix renormalization group@17–20#. The method
was invented, originally, so as to investigate the highly c
related systems such as the Hubbard models and the
chains. Later on, it was extended to the field of soft mater
such as the lattice vibrations@21–23#, the quantum string
@24,25#, and the bosonic systems@26,27#. We repeat density-
matrix renormalization one after another so as to reach
ficiently long transfer-matrix strip length@12#. The number
of states retained for a renormalized block is an import
technical parameter which is denoted bym.

One may wonder that the strong deformations increase
area of the piece of membrane considered to such an ex
that the emerging additional degrees of freedom for ad
tional molecules cannot be ignored. According to the idea
Helfrich, however, the correct statistical measure is the lo
mean curvature that has nothing to do with the ‘‘molecule
Therefore, our treatment is justified even for such strong
formations as long as we accept his idea. Strictly speak
we are not dealing with such molecules at all; rather, we h
just discretized the real space so as to form a square netw
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and the vertices are not to be regarded as molecules. In
the fluid membrane should have neither internal structure
fixed connectivity, and it is not fruitful to think of micro
scopic constituents and regard them as the degrees of
dom.

Finally, in the above, we have postulated the presence
reference plane from which all undulations are created,
we imposed no restriction to the total area of the membra
Hence, in terms of the category of Ref.@2#, the membrane is
to be classified into open framed membrane; see Ref.@28# as
well. The free energy per unit area of the reference plan
the naturally observable quantity. This leads to the idea
the effective bending moduli would be measured from
increase of the stress energy due to the reference-plane
formations. We will pursue this idea in the following sectio

B. Legendre transformation and the effective bending moduli
keff
„S,L … and k̄eff

„S,L …

In this section, we explain our approach to the effectiv
bending moduli. There are two types of bending moduli su
ask and k̄; see Eq.~1!. First, we explain the way to calcu
late the effective bending rigidity. We introduce the follow
ing Hamiltonian with an additional term:

HC5H2(
i

CJi5(
i

S kJi
2

2
dAi1k̄KidAi2CJi D .

~11!

The indexi runs over the shaded plaquettes of Fig. 1; T
quantitiesJi , Ki , anddAi are the same as those in Eq.~8!,
but possessing the plaquette indexi now. Note that the addi-
tional term is not lumped together with the factordAi be-
cause our aim is to calculate the stress energy with respe
the reference plane rather than the membrane surface i
The additional term breaks the symmetry of the mean cu
tureJ↔2J linearly. In other words, the membrane is forc
to bend so as to possess a nonvanishing spontaneous
curvature. Hence, with respect to the stress energy due to
reference-plane deformation, we are able to observe the
fective bending rigidity. That is the basic idea of our a
proach. Such an idea was featured in an analytical treatm
as well@9#. By the way, our aim is to put forward this idea
an actual computer simulation.

As is well known, the above idea is best formulated by
Legendre transformation

G~ j !5F~C!1C j , ~12!

with ]F/]C52 j . Here, F(C) denotes the free energy o
Hamiltonian~11! per unit cell~one shaded plaquette!. G( j )
is the desired Legendre-transformed free energy, which
function of the spontaneous mean curvaturej. Our concern is
to obtain the effective bending rigidity

ke f f
(S)5

]2G

] j 2
. ~13!
03190
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With use of the well-known identity (]2G/] j 2)(]2F/]C2)
521, we obtain the expression for the effective-bendi
rigidity

ke f f
(S)521/

]2F

]C2
. ~14!

Let us address a number of remarks. First, the free energF
is readily accessible by the transfer-matrix calculatio
Hence, the above formula is suited to our computer simu
tion. The remaining task is the numerical differentiation. W
had adopted ‘‘Richardson’s deferred approach to the lim
algorithm explicated in Ref.@29#. Second, we started from
Hamiltonian ~11!, which is defined on the reference plan
rather than the original fluctuating membrane surface. The
fore, the effective bending rigidity corresponds to the elas
modulus with respect to the reference-plane deformat
That is precisely what we sought.

The expression of Eq.~14! may seem to be exceedingl
formal. In fact, it may be unclear how the interaction of t
curvature with the undulations is taken into account. It
noteworthy that the Hamiltonian contains the symme
breaking termCJi and we have to evaluate the free energy
the presence of it. Just like the two-dimensional Ising mo
with the external field that has not yet been solved exac
such a problem with the symmetry breaking term is far fro
being trivial in itself, and generally, it contains valuable i
formation such as the interaction between the backgro
curvature and the thermal undulations. In fact, Eq.~14! states
that the second derivative with respect toC yields the effec-
tive rigidity. That is the underlying idea behind the form
expression of Eq.~14!. We stress that such an additional ter
is readily tractable by our simulation method, and owing
this advantage, we are able to access the effective rigidit
a quite straightforward manner.

We will introduce another effective bending rigidity
Through the coarse-graining depicted in Fig. 2, we obtai
coarse-grained lattice and the corresponding smeared cu
ture J̃ @12# after rescaling the unit of lengthA2a→a and
reexpressing the formulas in terms of the rescaled~smeared!
quantities~we put˜ for them!, we obtain the effective rigid-
ity for the coarse-grained membrane,

FIG. 2. Real-space decimation procedure. From the decima

coarse-grained curvaturesJ̃ andK̃ are constructed@12#. J̃ andK̃ are
used so as to obtain the corresponding effective-bending mo

namely,ke f f
(L) ~15! and k̄e f f

(L) ~19!.
1-4
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ke f f
(L)521Y ]2F̃~C̃!

]C̃2
. ~15!

Note that two unit cells are renormalized into one coar
grained unit cell. In other words, two molecules are ren
malized into one decimated molecule, and hence, the pa
eterM in Eq. ~2! should beM52.

Let us turn to the Gaussian-curvature modulus. In t
case, we incorporate the following additional term coupli
to the Gaussian curvature linearly:

HD5H2(
i

DKi5(
i

S kJi
2

2
dAi1k̄KidAi2DKi D .

~16!

Similar to the above, this leads to the following Legend
transformation:

G~k!5F~D !1Dk, ~17!

with ]F/]D52k. Our concern is to obtain the effectiv
Gaussian-curvature modulus, which, in other worlds, the
fective symmetry breaking term with respect to theK field.
Postulating that the effective free energyG(k) is a quadratic
polynomial in terms ofk, we obtain the following expres
sion:

ke f f
(S)52

]F

]DY ]2F

]D2
. ~18!

Again, the similar idea applies to the coarse-grained latt
Hence, we obtain

ke f f
(L)52

]F̃

]D̃
Y ]2F̃

]D̃2
. ~19!

We complete preparing the mathematical formulas for
effective bending moduli. We apply these formulas to t
computer simulation in the following section.

III. NUMERICAL CALCULATION OF THE EFFECTIVE
BENDING MODULI: ROLE OF THE STATISTICAL

MEASURES

In this section, we explore the effective bending mod

@ke f f
(S,L) , Eqs.~14! and~15! andk̄e f f

(S,L) , Eqs.~18! and~19!# of
a fluid membrane by means of the transfer-matrix meth
explained in Sec. II. The transfer matrix is diagonalized@12#
by means of the density-matrix renormalization group@17–
19#. Making a comparison between the results under
mean-curvature and the normal-displacement measures
will elucidate the role of statistical measures. As mention
in the above section, we have fixed the temperature (kBT
51) because this factor can be absorbed into the redefin
of the bending moduli.

Here, we shall outline some technical points that are
evant to the simulation precision.~Detailed account of the
simulation algorithm is presented in Ref.@12#.! We repeated
03190
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e
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d

e
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40 renormalizations for obtaining each plot; namely, the s
length of the transfer matrix extends toL580. The technical
parametersm, Ns , andR are indicated in each figure caption
see Sec. II for the meaning of these technical parame
These parameter values are equivalent or even improve
those used previously@12#. Therefore, the reliability of the
simulation is maintained.

A. Effective-bending rigidity keff
„S,L …

In this section, we focus our attention on the effecti
bending rigidity. For that purpose, for the time being, w
drop the Gaussian-curvature term, which is considered in

following section; namely, we setk̄50. In Fig. 3, we plotted
the effective bending rigidityke f f

(S,L) for various bare rigidity
k. The modulike f f

(S) and ke f f
(L) denote the effective bendin

rigidities for smaller and longer length scales, respective
see Eqs.~14! and ~15!. Here, we have accepted the loc
mean curvatureJ as for the statistical measure; recent d
cussion@9,11# insists that this statistical measure should
the right one. From the plot, we see that the rigiditieske f f

(S)

andke f f
(L) deviate from each other as for smallk. In the small-

k regime, the membrane becomes very flexible, and so
thermal fluctuations should be enhanced significantly. Hen
we see that the correction to the effective rigidity is actua
induced by the thermal fluctuations. Moreover, we not
ke f f

(L).ke f f
(S) . Hence, the membrane acquires stiffness

longer length scales; namely, the membrane stiffening
in. Such a membrane stiffening was first predicted by

FIG. 3. Effective-bending rigidityke f f
(S,L) is plotted for various

bare bending rigidityk and the fixed Gaussian-curvature rigidi

k̄50. We have accepted the local curvature as for the statis
measure. The simulation parameters for each symbol are (1) m
515, Ns58, andR50.9; (3) m515, Ns58, andR50.8; and
(*) m515, Ns59, andR50.7. Because ofke f f

(L).ke f f
(S) , we see that

the membrane is stiffened effectively for macroscopic length sca
The stiffening in the large-k side,k.0.4, may be the artifact of the
numerical simulation due to the pinning potential of discretized s
variables; there emerges the smooth phase just like the solid
solid model with large surface tension.
1-5
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YOSHIHIRO NISHIYAMA PHYSICAL REVIEW E 68, 031901 ~2003!
analytical arguments@9,11#. However, for the small-k re-
gime, the analytical arguments are not fully justified, beca
the arguments stem from the ‘‘nearly flat approximation
On the other hand, our first-principles simulation does
rely on any perturbative treatment. In that sense, our d
demonstrate very definitely that the membrane stiffening
curs withstanding the thermal disturbances.

Note that the effective rigidityke f f
(S) is by no means iden

tical to the ‘‘bare’’ coupling constantk. The former is the
bending elasticity with respect to the reference-plane de
mations, whereas the latter is the elastic constant of
membrane surface itself. Therefore, they need not coinc
However, for sufficiently largek, as is seen from Fig. 3, th
curve tends to be parallel to the slope of the lineke f f

(S)5k,
indicating that they coincide asymptotically for largek.

We shall argue the relationship between the above re
and our previous report@12#. The regimek,0.4, where we
found a notable deviation ofke f f

(S) and ke f f
(L) in Fig. 3, coin-

cides with the area of the prominent]k8/]k enhancemen
reported in Fig. 7 of Ref.@12#. ~Although ]k8/]k does not
yield direct assessment of the effective rigidity, we co
cluded that the]k8/]k enhancement should reflect the me
brane stiffening.! Hence, in retrospect, our preceding ana
sis appears to capture the precursor of the memb
stiffening fairly correctly.

In Fig. 3, at k'0.4, there appears a singularity: Th
moduli ke f f

(S) and ke f f
(L) approach to each other and fork

.0.4, they split off again. This singularity may indicate a
onset of a phase transition. Fork.0.4, because ofke f f

(L)

.ke f f
(S) , a membrane stiffening should occur. As a matter

fact, because of the discretization of the step variables@see
Sec. II#, it is likely that the membrane is trapped by the mo
stable configuration~flat surface! for largek. ~It is expected
that the membrane becomes flat just like the smooth phas
the solid-on-solid model with large surface tension.! More-
over, it is well known that the correlation length diverg
exponentially for largek @10#. Such a long correlation lengt
would exceed the capability of the numerical simulation. T
large-k behavior appearing ink.0.4 is thus an artifact of
the numerical simulation. The membrane stiffening for la
k is not intrinsic and is rather driven by the mechanis
different from that of the small-k side.

In Fig. 4~a!, keeping such a drawback in mind, we ha
drawn an anticipated behavior of the effective-bending rig
ity for a wide range ofk. As mentioned above, the analytic
treatment is justified for largek. On the other hand, ou
first-principles simulation works efficiently in the other sid
~nonperturbative regime!. For sufficiently largek, the ana-
lytical argument predicts the correction to the effectivek
such ask82k5 ln M/8p50.027 . . . . The correction ap-
pears to be exceedingly small to be resolved by the num
cal simulation; see Fig. 3 as well. On the other hand, for
small-k regime, our simulation data indicate that the corre
tion to the effectivek increases very significantly. Th
amount of correction is comparable to the therm
fluctuation energy; note that we have chosenkBT as the unit
of energy (kBT51). Hence, it is suggested that for macr
scopic length scales, the membrane acquires a conside
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amount of effective stiffness, and it would look almost fl
irrespective of the thermal disturbances.

Let us turn to the normal-displacement statistical meas
In Fig. 5, we plotted the effective bending rigidityke f f

(S,L)

under this statistical measure. Notably enough, the beha
is quite contrastive with that of the local-curvature meas
mentioned above: The larger-scale effective rigidityke f f

(L) is
suppressed by the thermal undulations. Hence, it is sh
that the membrane is softened effectively for macrosco
length scales. This result may meet our intuition and h
been predicted by numerous analytical arguments base
the normal-displacement measure@5–8#. We stress that our
first-principles simulation covers various statistical measu
in a unified way. Our simulation clarifies fairly definitely tha
the choice of measure factors is vital for the thermodynam
of the fluid membrane. Again, for largek'0.8, a signature
of the membrane stiffeningke f f

(L).ke f f
(S) comes up, and the

membrane should undergo the flat phase. This behavior
drawback of our simulation as mentioned above. Keep
this in mind, we have drawn a schematic behavior of
effective bending rigidity in Fig. 4~b!. For largek, the ana-
lytical argument predicts the renormalization correctionk8
2k523 lnM/8p520.082 . . . , which is beyond the reso

FIG. 4. Schematic drawings ofke f f
(S,L) anticipated from our first-

principles data~Figs. 3 and 5! and the analytical result justified fo
sufficiently largek @Eq. ~2!#. ~a! The mean curvature is accepted
for the statistical measure.~b! The normal displacement is accepte
for the statistical measure.
1-6
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lution of the present numerical simulation. As for the sma
k regime, the correction is enhanced. However, the enha
ment is not so prominent as in the case of the mean-curva
measure. It is almost comparable to the analytical predict
see Fig. 5 as well. Hence, our first-principles simulation
dicates that the analytical formula~2! is more or less appli-
cable even for the case of the nonperturbative regime un
the normal-displacement measure.

B. Effective Gaussian-curvature modulusk̄eff
„S,L …

In the above, we have studied the thermal-fluctuati
induced corrections to the bending rigidityk. In this section,
we incorporate the Gaussian-curvature modulusk̄, and look
into its effective strengthk̄e f f

(S,L) . As noted in Introduction,
the Gaussian-curvature-modulus term is related to the to
logical index, and hence, it governs the global structure
the membranes. Roughly speaking, fork̄.0, the plumber’s-
nightmare phase~lamellar with tunnel-like defects! is stabi-
lized, whereas fork̄,0, the formation of vesicles~droplets!
is favored. In that sense, the quantityk̄e f f

(S,L) reflects the ten-
dencies toward the topological instabilities.

In Figs. 6 and 7, we presented the effective Gauss
curvature modulus for various barek̄ under the statistica
measures of the mean curvature and the normal displ
ment, respectively. Here,k is fixed to be k52/A2
(50.35 . . . ) and 0.4 forrespective figures. First, let us argu
the latter. ~Because this case provides a prototypical
ample, we will argue it prior to the mean-curvature cas!

FIG. 5. Effective-bending rigidityke f f
(S,L) is plotted for various

bare bending rigidityk and the fixed Gaussian-curvature rigidi

k̄50. We have accepted the normal displacement as for the st
tical measure. The simulation parameters for each symbol
(1) m513, Ns59, and R50.55; (3) m510, Ns511, andR
50.45; and (*) m511, Ns510, and R50.5. Because ofke f f

(L)

,ke f f
(S) , we see that the membrane is softened effectively for m

roscopic length scales. The stiffening in the large-k side, k.0.8,
may be the artifact of the numerical simulation due to the pinn
potential of discretized step variables; there emerges the sm
phase just like the solid-on-solid model with large surface tens
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FIG. 6. Effective Gaussian-curvature modulusk̄e f f
(S,L) @Eqs.~18!

and~19!# is plotted for various bare modulusk̄ and the fixed bend-
ing rigidity k52/A2(50.35 . . . ). Wehave accepted the local cur
vature as for the statistical measure. The simulation parameter
each symbol are (1) m515, Ns57, andR51; and (3) m515,
Ns58, andR50.9. We see that the effective modulus stays alm

scale invariant aroundk̄e f f
(S,L)'0 through coarse graining, confirm

ing the validity of the analytical prediction@Eq. ~3!#. Moreover, we

notice thatk̄e f f
(S,L) exhibits a large negative residual value even

zero barek̄50. This fact reflects that the membrane undulatio
are dominated by the formation of ‘‘hat excitations’’@9#.

FIG. 7. Effective Gaussian-curvature modulusk̄e f f
(S,L) @Eqs.~18!

and~19!# is plotted for various bare modulusk̄ and the fixed bend-
ing rigidity k50.4. We have accepted the normal displacemen
for the statistical measure. The simulation parameters for each s
bol are (1) m514, Ns58, andR50.6; and (3) m59, Ns511,

and R50.45. We see thatuk̄e f f
(L)u is suppressed aroundk̄'0. This

fact tells that for macroscopic length scales~because of the restric
tion of the reference plane! the planar-type morphology is favored

namely,k̄ is irrelevant in the infrared limit. Fork̄,20.6, in turn,

uk̄e f f
(L)u is enhanced eventually, suggesting that the membrane t

to dissolve into the solvent~droplet phase!.
1-7



an
ng
he

s
pl
or
im
ne
th
-

v

he

s
m
yp

f

is
h
na
t

e

a
t
m

s
e

s.
o

e
-

ac

ria
e

s
u

b
a
o
s

par-
el-
a
e

e
ing
to
off
in
tical
as,
As
en-
s. 3
he

-

ris-
ri-

for

ical
oft-
e
the
red
ost
of

ns
ion
le
ven-
e
f the
nd

ure
the
tive
lap
e
iant
ith

ga-
act
the

ob-

the

YOSHIHIRO NISHIYAMA PHYSICAL REVIEW E 68, 031901 ~2003!
The latter case has been studied extensively so far with
lytical approaches@7,8#. However, because we are supposi
that the membrane is framed by the reference plane, t

emerge some characteristic features. Fork̄'0, we see that a

large amount of effectiveuk̄e f f
(S) u appears. This result indicate

that the membrane undulations are dominated by the dim
like deformations, and possibly, the membrane tends to f
droplets. This feature is in accordant with the previous cla
@30# that for small membrane concentration, the membra
are thermodynamically unstable to the dissolution into
solvents~sponge phase!. On the contrary, the effective modu
lus for the longer length scale, namely,uke f f

(L)u, exhibits con-
siderable suppression. Notably enough, it becomes e

positive for k̄.0.1: For macroscopic length scales, t

membrane recovers its stability aroundk̄'0, although mi-
croscopic undulations are in favor of droplets. Such a cro
over behavior is convincing because the membrane is fra
by the reference plane, and macroscopically, lamellar-t
structure should be retained.

As the bare modulusk̄ decreases, the effective moduli o

different length scales coincide atk̄;20.6. For the region

exceeding this pointk̄,20.6, in turn,k̄e f f
(L) dominatesk̄e f f

(S)

eventually. Hence, in this region, the droplet formation
favored for macroscopic length scales. The location of t
transition point is reminiscent of that advocated by the a
lytical arguments@31,32#, which predicts the transition poin

k̄c'210k/9520.44 . . . . In oursimulation, the planar-type
morphology is assumeda priori. Therefore, in such a regim

k̄,k̄c , our numerical simulation does not cover such
sponge phase. In fact, it suffers from pathologies such as
diverging mean deviation of the step variables. In the sa

way, for exceedingly largek̄.0.1, the membrane become
unstable owing to the topological instability toward th
plumber’s-nightmare phase. In the regions depicted in Fig
and 7, the planar-type morphology is retained, and thus
simulations are reliable.

Second, let us turn to the case of the mean-curvature m
sure: In Fig. 6, we plottedk̄e f f

(S,L) for various bare Gaussian

curvature modulusk̄. There appear some behaviors char
teristic of the mean-curvature measure: We notice thatk̄e f f

(S)

andk̄e f f
(L) almost overlap each other aroundk̄'0. That is, the

Gaussian-curvature modulus stays almost scale inva
through coarse graining. This result supports the aforem
tioned analytical prediction@9,11# of Eq. ~3!. In addition to
this, it is to be noted thatk̄e f f

(S,L) exhibits a large negative

residual valuek̄e f f
(S,L)'21.4 aroundk̄'0. That is, although

the bare couplingk̄ is turned off, the membrane undulation
are dominated by the dimplelike deformations. This res
validates the postulation by Helfrich@9# insisting that the
elementary excitations of the thermal undulations should
the ‘‘hat excitations’’ rather than the ordinary sinusoid
ones. Because the hat-excitation picture is the starting p
of his arguments. the whole theoretical structure appear
be self-consistent from our first-principles data.
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IV. SUMMARY AND DISCUSSIONS

We have investigated the effective bending moduli,ke f f
(S,L)

@Eqs.~14! and~15!# and k̄e f f
(S,L) @Eqs.~18! and~19!#, with an

emphasis on the role of the statistical measures for the
tition sum. We employed the transfer-matrix method dev
oped in our preceding paper@12#, where we had reported
preliminary analysis on the effective bending rigidity via th
transformation coefficient]k8/]k. In the present paper, w
proposed the scheme to determine the effective bend
moduli directly: We calculated the free-energy cost due
the reference-plane deformations, from which we read
the effective bending moduli. This idea is formulated
terms of the Legendre transformation, and the mathema
formalism is developed in Sec. II A. Based on the formul
we carried out extensive computer simulations in Sec. III.
a result, we found a clear evidence of the membrane stiff
ing in the case of the mean-curvature measure; see Fig
and 4~a!. The membrane stiffening was first predicted by t
analytical approaches@9,11#, which are validated for suffi-
ciently largek. Our first-principles data show that the mem
brane stiffening occurs even for the nonperturbative~small
k) regime withstanding the thermal disturbances. Surp
ingly enough, the enhancement of the effective bending
gidity copes with the thermal-fluctuation energy;kBT, sug-
gesting that the membrane would stay almost flat
macroscopic length scales.

On the contrary, under the normal-displacement statist
measure, we found a clear indication of the membrane s
ening; see Figs. 4~b! and 5. This fact indicates that the choic
of measure factors is indeed significant. The correction to
effective bending rigidity appears to be moderate compa
with that of the mean-curvature measure. In fact, it is alm
comparable to the prediction by the analytical treatment
Eq. ~2! even for smallk.

For exceedingly large rigidity, the membrane fluctuatio
freeze because of the exponentially diverging correlat
length@10# and the pinning potential due to the step-variab
discretization; the membrane undergoes the flat phase e
tually just like the solid-on-solid model with large surfac
tension. The appearance of such a phase is a drawback o
numerical simulation, and in this respect, the simulation a
the analytical treatment are both complementary.

Furthermore, we incorporated the Gaussian-curvat
modulus, and studied its effective strength. Accepting
mean-curvature measure, we found that the effec
Gaussian-curvature moduli for different length scales over
each other aroundk̄'0; see Fig. 6. In other words, th
Gaussian-curvature modulus stays almost scale invar
through coarse graining. This fact is in good agreement w
the analytical prediction of Eq.~3!. In addition to this, the
effective Gaussian-curvature modulus exhibits a large ne
tive residual value even for zero bare modulus. This f
indicates that the membrane fluctuations are governed by
dimplelike deformations that should be scale-free. This
servation again supports the scenario of Ref.@9# insisting
that the thermal undulations should be decomposed into
hat excitations.
1-8
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To conclude, by means of the first-principles simulati
technique, we have investigated the series of analytical
dictions advocated by Pinnow and Helfrich@9,11#. Thereby,
we found that these predictions hold true even for the n
perturbative regime. In particular, the hat-excitation pictu
which is the very starting point of their argument, is va
dated by ourk̄e f f

(S,L) data. Therefore, the postulation and
deductive hypotheses turn out to be fairly consistent a
nd
n-

es

e,

03190
e-

-
,

a

whole. Hence, it is very likely that the mean curvature
indeed a physically, sensible statistical measure for the
tition sum.
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